
Applied Mathematics and Computation 181 (2006) 1490–1498

www.elsevier.com/locate/amc
On the topological equivalence of the Arrow
impossibility theorem and Amartya Sen’s liberal paradox

Yasuhito Tanaka

Faculty of Economics, Doshisha University, Kamigyo-ku, Kyoto 602-8580, Japan
Abstract

We will show that the Arrow impossibility theorem for binary social choice rules that there exists no binary social
choice rule which satisfies transitivity, Pareto principle, independence of irrelevant alternatives (IIA), and has no dictator,
and Amartya Sen’s liberal paradox for binary social choice rules that there exists no binary social choice rule which sat-
isfies acyclicity, Pareto principle and the minimal liberalism are topologically equivalent using elementary tools of algebraic
topology such as homomorphisms of homology groups of simplicial complexes induced by simplicial mappings.
Our research is in line with the studies of topological approaches to discrete social choice problems initiated by
[Y. Baryshnikov, Unifying impossibility theorems: a topological approach, Advances in Applied Mathematics 14 (1993)
404–415]. Also we will show that these two theorems are special cases of the theorem that there exists no binary social
choice rule which satisfies Pareto principle and the non-surjectivity of individual inclusion mappings.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Topological approaches to social choice problems have been initiated by Chichilnisky [6]. Her main result is
an impossibility theorem that there exists no continuous social choice rule which satisfies unanimity and ano-

nymity. This approach has been further developed by Chichilnisky [5,7], Candeal and Indurain [4], Koshevoy
[9], Lauwers [11], Weinberger [15], and so on. On the other hand, Baryshnikov [2,3] have presented a topolog-
ical approach to the Arrow impossibility theorem (or general possibility theorem) in a discrete framework of
social choice.1

We will show that the Arrow impossibility theorem for binary social choice rules that there exists no binary
social choice rule which satisfies transitivity, Pareto principle, independence of irrelevant alternatives (IIA),
and has no dictator, and Amartya Sen’s liberal paradox for binary social choice rules that there exists no
0096-3003/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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1 About surveys and basic results of topological social choice theories, see Mehta [12] and Lauwers [10].
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binary social choice rule which satisfies acyclicity, Pareto principle and the minimal liberalism are topologi-
cally equivalent using elementary tools of algebraic topology such as homomorphisms of homology groups
of simplicial complexes induced by simplicial mappings. Also we will show that these two theorems are special
cases of the theorem that there exists no binary social choice rule which satisfies Pareto principle and the non-
surjectivity of individual inclusion mappings. Our research is in line with the studies of topological approaches
to discrete social choice problems initiated by Baryshnikov [2].

In the next section we present expressions of binary social choice rules by simplicial complexes and simpli-
cial mappings. In Section 3, we will prove the main results of this paper.
2. The expressions of social choice problems by simplicial complexes and simplicial mappings

There are m alternatives of a social problem, x1,x2, . . . ,xm (m = 3), and n individuals (n = 2). m and n are
finite integers. Individual preferences over these alternatives are complete, transitive and asymmetric.

A social choice rule which we will consider is a rule that determines a social preference about each pair of
alternatives corresponding to a combination of individual preferences. We call such a social choice rule a bin-

ary social choice rule. The social preference should be complete, but may be or may not be transitive. As usual
we assume the universal domain condition for social choice rules. We call a combination of individual pref-
erences a profile. The profiles are denoted by p, p 0 and so on.

We will consider two social choice problems about binary social choice rules.

(1) (Amartya Sen’s liberal paradox): The liberal paradox by Amartya Sen [13] states that there exists no bin-
ary social choice rule which satisfies acyclicity, Pareto principle and the minimal liberalism. The means of
these conditions are as follows.
Acyclicity: If the society (strictly) prefers xi to xj, and (strictly) prefers xj to xk, then it should prefer xi to
xk or be indifferent between them. It is weaker than transitivity which requires that the society (strictly)
prefers xi to xk.
Pareto principle: If all individuals prefer an alternative xi to another alternative xj, then the society pre-
fers xi to xj.
Minimal liberalism: At least two individuals, denoted by A and B, are decisive for some pairs of alter-
natives in both directions in the sense described in the following Assumption 1.

In what follows as the condition of the minimal liberalism we assume

Assumption 1. If individual A prefers x1 to x3 (or prefers x3 to x1), then the society prefers x1 to x3 (or prefers
x3 to x1). And if individual B prefers x2 to x4 (or prefers x4 to x2), then the society prefers x2 to x4 (or prefers x4

to x2).

Other individuals are not necessarily decisive. We can proceed the arguments in a similar manner based on
other assumptions about the minimal liberalism by permuting or renaming alternatives. We abbreviate the
problem of the liberal paradox as LP.

(2) (The Arrow impossibility theorem): The Arrow impossibility theorem [1] states that there exists no binary
social choice rule which satisfies transitivity, Pareto principle and independence of irrelevant alternatives

(IIA), and has no dictator, or in other words there exists the dictator for any binary social choice rule
which satisfies transitivity, Pareto principle and IIA. The dictator for a binary social choice rule is an
individual such that whenever he (strictly) prefers one alternative (denoted by x) to another alternative
(denoted by y), the society also (strictly) prefers x to y. The meanings of two conditions, transitivity and
IIA, are as follows.
Transitivity: If the society (strictly) prefers xi to xj, and (strictly) prefers xj to xk, then the society should
(strictly) prefer xi to xk.
Independence of irrelevant alternatives (IIA): The society’s preference about any pair of two alternatives
depends only on individual preferences about these alternatives.
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We abbreviate the problem of the Arrow impossibility theorem as AR. Pareto principle for AR is the same
as that for LP.

We draw a circumference which represents the set of individual preferences by connecting m! vertices
v1,v2, . . . ,vm! by arcs.2 For example, in the case of four alternatives, these vertices mean the following
preferences:
2 m!

3 Ab
v1 : ð1234Þ; v2 : ð1243Þ; v3 : ð1423Þ; v4 : ð1432Þ; v5 : ð1342Þ; v6 : ð1324Þ;
v7 : ð2134Þ; v8 : ð2143Þ; v9 : ð2413Þ; v10 : ð2431Þ; v11 : ð2341Þ; v12 : ð2314Þ;
v13 : ð3124Þ; v14 : ð3142Þ; v15 : ð3412Þ; v16 : ð3421Þ; v17 : ð3241Þ; v18 : ð3214Þ;
v19 : ð4123Þ; v20 : ð4132Þ; v21 : ð4312Þ; v22 : ð4321Þ; v23 : ð4231Þ; v24 : ð4213Þ.
We denote a preference such that an individual prefers x1 to x2 to x3 to x4 by (1234), and so on. Notations for
the cases with different number of alternatives are similar. Generally v1 � v(m�1)! represent preferences such
that the most preferred alternative for an individual is x1, v(m�1)!+1 � v2(m�1)! represent preferences such that
the most preferred alternative for an individual is x2, and so on. And v1 is a preference such that an individual
prefers x1 to x2 to x3 to � � � to xm. It is denoted by (123 � � � m). v(m�1)!+1 is a preference such that an individual
prefers x2 to x1 to x3 to x4 to � � � to xm, which is denoted by (2134 � � � m).

Denote this circumference by S1
i . S1

i in the case of three alternatives is depicted in Fig. 1. The set of profiles
of the preferences of n individuals is represented by the product space S1

i � � � � � S1
i (n times). It is denoted by

ðS1
i Þ

n. The one-dimensional homology group of S1
i is isomorphic to the group of integers Z, that is,

H 1ðS1
i Þ ffi Z. And the one-dimensional homology group of ðS1

i Þ
n is isomorphic to the direct product of n groups

of integers Zn, that is, we have H 1ððS1
i Þ

nÞ ffi Zn. It is proved, for example, using the Mayer–Vietoris exact
sequences.3

The social preference is also represented by a circumference depicted in Fig. 2. This circumference is drawn
by connecting three vertices, w1, w2 and w3 by arcs. For LP these vertices mean the following social
preferences:

(1) w1: social preferences such that the society prefers x4 to all other alternatives,
(2) w3: social preferences such that the society prefers x3 to all other alternatives,
(3) w2: all other social preferences.
denotes the factorial of m.

m! ¼
Ym

j¼1

j ¼ mðm� 1Þðm� 2Þ � � � � � 2� 1.

out homology groups and the Mayer–Vietoris exact sequences we referred to Tamura [14] and Komiya [8].
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Similarly for AR these vertices mean the following social preferences:

(1) w1: social preferences such that the society prefers x4 to all other alternatives,
(2) w3: social preferences such that the society prefers x3 to all other alternatives,
(3) w2: all other social preferences.

That is, the vertices w1 and w3 denote the same social preferences for LP and AR, and the set of social pref-
erences expressed by w2 for AR is the proper subset of the set of social preferences expressed by w2 for LP
because the social preference are required to satisfy transitivity in AR, but in LP we require only acyclicity.

We call this circumference S1. The one-dimensional homology group of S1 is also isomorphic to Z, that is,
H 1ðS1Þ ffi Z.

Binary social choice rules are simplicial mappings. Binary social choice rules in AR and LP are denoted by
f : ðS1

i Þ
n ! S1. Two adjacent vertices of S1

i span a one-dimensional simplex. And any pair of two vertices of
S1 spans a one-dimensional simplex. Thus, f is a simplicial mapping, and we can define the homomorphism
of homology groups induced by f.

We define an inclusion mapping from S1
i to ðS1

i Þ
n by D : S1

i ! ðS1
i Þ

n under the assumption that all individ-
uals have the same preferences, and define an inclusion mapping when the profile of preferences of individuals
other than one individual (denoted by i) is fixed at some profile by ii : S1

i ! ðS1
i Þ

n. The homomorphisms of
homology groups induced by these inclusion mappings are as follows:
D� : Z! Zn : h! ðh; h; . . . ; hÞ; h 2 Z;

ii� : Z! Zn : h! ð0; . . . ; 0; h; 0; . . . ; 0Þ; h 2 Z ðonly the ith component is hÞ.
From these definitions we obtain the following relation about D* and ii* at any profile:
D� ¼
Xn

i¼1

ii�. ð1Þ
Let the homomorphism of homology groups induced by f be f� : ðZÞn ! Z.

Binary social choice rules for different profiles are homotopic. f for a fixed profile of the preferences of
individuals other than i (denoted by f jp�i

) and f for another fixed profile of the preferences of individuals
other than i (denoted by f jp0�i

) are homotopic. Thus, the homomorphisms of homology groups induced by
them are isomorphic. Denote two profiles of individuals other than i by p�i and p0�i. Then, the homotopy

between f jp�i
and f jp0�i

is ft ¼
tf jp�i

þð1�tÞf jp0�i
jtf jp�i

þð1�tÞf jp0�i
j (0 5 t 5 1). It is well defined since f jp�i

and f jp0�i
are not anti-

podal.
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The composite function of ii and f is denoted by f � ii : S1
i ! S1, and its induced homomorphism of homol-

ogy groups satisfies (f � ii)* = f* � ii*, for all i. The composite function of D and f is denoted by f � D : S1
i ! S1,

and its induced homomorphism of homology groups satisfies (f � D)* = f* � D*. From (1) we obtain
4 Fro
order
ðf � DÞ� ¼
Xn

i¼1

ðf � iiÞ�. ð2Þ
3. The main results

For binary social choice rules in AR we define the following concept:

Weak monotonicity. For two alternatives xi and xj, suppose that at profile p the society prefers xi to xj. And
suppose that individuals, who prefer xi to xj at p, prefer xi to xj at another profile p 0. Then, the society pre-
fers xi to xj at p 0.

We show the following result.

Lemma 1. Any binary social choice rule in AR which satisfies transitivity, Pareto principle and IIA satisfies the

weak monotonicity.

Proof. We use notations in the definition of the weak monotonicity. Let xk be an arbitrary alternative other
than xi and xj.

Suppose that individuals, who prefer xi to xj at p, prefer xi to xj to xk at another profile p00, and individuals,
who prefer xj to xi at p, prefer xj to xk to xi at p00.

And suppose that individuals, who prefer xi to xj at p, prefer xi to xk to xj at another profile p*, and
individuals, who prefer xj to xi at p, prefer xk to xi and prefer xk to xj at p* (their preferences about xi and xj are
not specified).

By transitivity, Pareto principle and IIA the society prefers xi to xj to xk at p00. Again by transitivity, Pareto
principle and IIA (about xi and xk) the society prefers xi to xk to xj at p*. Then, IIA implies that the society
prefers xi to xj so long as individuals, who prefer xi to xj at p, prefer xi to xj at an arbitrary profile p 0. h

Next we show the following lemma which will be used below:

Lemma 2. Suppose that a binary social choice rule satisfies transitivity, Pareto principle, IIA, and has no

dictator. If the preference of one individual (denoted by i) is v(m�1)!+1 and the preferences of all other individuals

are v1, then the most preferred alternative for the society is x1.

Proof. Note that v(m�1)!+1 represents a preference (2134 � � � m), and v1 represents a preference (123 � � � m). By
Pareto principle the society prefers x1 and x2 to all other alternatives. It may prefer x1 to x2, or x2 to x1.4 But
we can show that if the society prefers x2 to x1, individual i is the dictator. Assume that the society prefers x2 to
x1 to all other alternatives. By the weak monotonicity the society prefers x2 to x1 so long as individual i prefers
x2 to x1. Then, we say that individual i is decisive for x2 against x1. Let xj and xk (xk 5 xj) be alternatives other
than x1 and x2, and consider the following profile:

(1) Individual i prefers xk to x2 to x1 to xj.
(2) Other individuals prefer x1 to xj to xk to x2.

By the weak monotonicity (or IIA) the society should prefer x2 to x1. And by Pareto principle the society
should prefer x1 to xj, and prefer xk to x2. Then, transitivity implies that the society prefers xk to xj. The weak
m Lemma 1 of Baryshnikov [2] we know that if individual preferences are strict orders, then the social preference is also a strict
under transitivity, Pareto principle and IIA.
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monotonicity implies that the society prefers xk to xj so long as individual i prefers xk to xj, and individual i is
decisive for xk against xj. Note that xj and xk are arbitrary. Next consider the following profile:

(1) Individual i prefers x2 to xk to xj.
(2) Other individuals prefer xj to x2 to xk.

By the weak monotonicity the society should prefer xk to xj. And by Pareto principle the society should
prefer x2 to xk. Then, transitivity implies that the society prefers x2 to xj. The weak monotonicity implies that
the society prefers x2 to xj so long as individual i prefers x2 to xj, and individual i is decisive for x2 against xj.
Consider the following profile:

(1) Individual i prefers xk to xj to x2.
(2) Other individuals prefer xj to x2 to xk.

By the weak monotonicity the society should prefer xk to xj. And by Pareto principle the society should
prefer xj to x2. Then, transitivity implies that the society prefers xk to x2. The weak monotonicity implies that
the society prefers xk to x2 so long as individual i prefers xk to x2, and individual i is decisive for xk against x2.
By similar procedures we can show that individual i is decisive for x1 against xj, and is decisive for xk against
x1. Finally consider the following profile:

(1) Individual i prefers x1 to xk to x2.
(2) Other individuals prefer x2 to x1 to xk.

By the weak monotonicity the society should prefer xk to x2. And by Pareto principle the society should
prefer x1 to xk. Then, transitivity implies that the society prefers x1 to x2. The weak monotonicity implies that
the society prefers x1 to x2 so long as individual i prefers x1 to x2, and individual i is decisive for x1 against x2.
Therefore, individual i is the dictator, and we must assume that the society prefers x1 to all other alternatives
when the preference of individual i is v(m�1)!+1 and the preferences of individuals other than i are v1. h

In both AR and LP cases, by Pareto principle we obtain the correspondences from the vertices of S1
i to the

vertices of S1 by f � D as follows:
v1 � v2ðm�1Þ! ! w2; v2ðm�1Þ!þ1 � v3ðm�1Þ! ! w3; v3ðm�1Þ!þ1 � v4ðm�1Þ! ! w1.
All other vertices correspond to w2. Sets of one-dimensional simplices included in S1
i which are one-dimen-

sional cycles are only the following z and its counterpart �z:
z ¼ hv1; v2i þ hv2; v3i þ � � � þ hvm!�1; vm!i þ hvm!; v1i.

Since S1

i does not have a two-dimensional simplex, z is a representative element of homology classes of S1
i . z is

transferred by (f � D)* to the following z 0:
z0 ¼ hw2;w3i þ hw3;w1i þ hw1;w2i.

This is a cycle of S1. Therefore, we have
ðf � DÞ� 6¼ 0. ð3Þ

Now we show the following lemma.

Lemma 3

(1) If a binary social choice rule satisfies acyclicity, Pareto principle and the minimal liberalism described in

Assumption 1, then we obtain
ðf � iiÞ� ¼ 0 for all i. ð4Þ

(2) If a binary social choice rule satisfies transitivity, Pareto principle and IIA, then we obtain (4).
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Proof

(1) First we show (f � ii)* = 0 for individual A and B. Consider the case of individual B. From Assumption 1
and Pareto principle, the correspondences from the preference of individual B to the social preference when
the preference of every other individual (including individual A) is fixed at v1 are obtained as follows:
5 (f �
v1 � vðm�1Þ! ! w2; vðm�1Þ!þ1 � vm! ! w1 or w2.
In this case x3 cannot be the most preferred alternative for the society.
Sets of one-dimensional simplices included in S1

i for individual B (denoted by S1
B) which are one-dimen-

sional cycles are only the following z and its counterpart �z:
z ¼ hv1; v2i þ hv2; v3i þ � � � þ hvm!�1; vm!i þ hvm!; v1i.

Since S1

B does not have a two-dimensional simplex, z is a representative element of homology classes of
S1

B. z is transferred by (f � iB)*, which is (f � ii)* for individual B, to the following z 0 in S1:
z0 ¼ hw2;w1i þ � � � þ hw1;w2i ¼ 0 or z0 ¼ hw2;w2i ¼ 0.
This is not a cycle. Therefore, we get (f � iB)* = 0. Similarly we can show (f � iA)* = 0.5 Next we show
(f � ii)* = 0 for any individual (denoted by i) other than A and B. From Assumption 1 and Pareto prin-
ciple, the correspondences from the preference of individual i to the social preference when the prefer-
ence of every other individual (including individual A and B) is fixed at v1 are obtained as follows:
v1 � vm! ! w2.
Because x3 and x4 cannot be the most preferred alternative for the society. Then, we obtain (f � ii)* = 0
for all i other than A and B.

(2) By Pareto principle when the preference of every individual other than i is fixed at v1, the correspon-
dences from the preference of individual i to the social preference from v1 to v(m�1)! are as follows:
v1 � vðm�1Þ! ! w2.
From Lemma 2 the correspondence from v(m�1)!+1 to the social preference is as follow:
vðm�1Þ!þ1 ! w2.
Consider another profile at which the preference of individual i changes to (234 � � � m1). By Pareto prin-
ciple and the weak monotonicity (about x1 and x2) the society prefers x1 to all other alternatives. Further
the weak monotonicity implies that the society prefers x1 to all other alternatives so long as the most
preferred alternative for all individuals other than i is x1 regardless of the preference of individual i.
Thus, we obtain the following correspondences:
vðm�1Þ!þ2 � vm! ! w2.
Sets of one-dimensional simplices included in S1
i which are one-dimensional cycles are only the following

z and its counterpart �z:
z ¼ hv1; v2i þ hv2; v3i þ � � � þ hvm!�1; vm!i þ hvm!; v1i.

Since S1

i does not have a two-dimensional simplex, z is a representative element of homology classes of
S1

i . z is transferred by (f � ii)* to the following z 0:
z0 ¼ hw2;w2i ¼ 0.
Therefore, we have (f � ii)* = 0 for all i. h

The conclusion of this lemma contradicts (2) and (3) for both LP and AR. Therefore, we have shown the
following theorem.
iA)
*

is (f � ii)*
for individual A. In this case x4 cannot be the most preferred alternative for the society.
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Theorem 1

(1) There exists no binary social choice rule which satisfies acyclicity, Pareto principle and the minimal

liberalism.
(2) There exists no binary social choice rule which satisfies transitivity, Pareto principle and IIA, and has no

dictator.
We call the property expressed in (4) the non-surjectivity of individual inclusion mappings. Then, the above
two theorems are special cases of the following theorem:

Theorem 2. There exists no binary social choice rule which satisfies Pareto principle and the non-surjectivity of

individual inclusion mappings.

From (3) Pareto principle implies the surjectivity of the diagonal mapping (f � D)* 5 0, for binary social
choice rules. Thus, this theorem is rewritten as follows:

There exists no binary social choice rule which satisfies the surjectivity of the diagonal mapping and the non-

surjectivity of individual inclusion mappings.

4. Concluding remarks

We have shown the topological equivalence of the Arrow impossibility theorem that there exists no binary
social choice rule which satisfies transitivity, Pareto principle, independence of irrelevant alternatives, and has
no dictator, and Amartya Sen’s liberal paradox that there exists no binary social choice rule which satisfies
acyclicity, Pareto principle and the minimal liberalism. And we have also shown that these two theorems
are special cases of the theorem that there exists no binary social choice rule which satisfies Pareto principle
and the non-surjectivity of individual inclusion mappings.

In Baryshnikov [3] he said, ‘‘the similarities between the two theories, the classical and topological ones, are
somewhat more extended than one would expect. The details seem to fit too well to represent just an analogy. I
would conjecture that the homological way of proving results in both theories is a ‘true’ one because of its
uniformity and thus can lead to much deeper understanding of the structure of social choice. To understand
this structure better we need a much more evolved collection of examples of unifying these two theories and I
hope this can and will be done’’. This paper is an attempt to provide such an example.
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